Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1354986

ABSTRACT

Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNß, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53's role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/immunology , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Binding Sites , COVID-19/virology , Humans , Immunity, Innate , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/immunology , Poly (ADP-Ribose) Polymerase-1/metabolism , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Vaccination , Virus Internalization
2.
Nucleic Acids Res ; 48(17): 9694-9709, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-745778

ABSTRACT

DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.


Subject(s)
DNA Damage , DNA Repair/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Binding Sites , Catalytic Domain , Cell Line, Tumor , DNA Repair/physiology , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Indazoles/pharmacology , Kinetics , Molecular Imaging , NAD/metabolism , Piperidines/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL